

人体前景的自动抠图算法

冉清,冯结青* 计算机辅助设计与图形学国家重点实验室 浙江大学

研究背景

相关工作

本文算法

实现细节

实验分析

小结与展望

研究背景

• 基于多双目视觉的人体模型获取与重建系统

• 系统采集图像的人体前景自动抠图算法

- 前景抠图:减少立体匹配、点云处理的计算量
- 自动算法:满足大批量数据的处理需求

• 解决思路

- 给定大量具有Alpha蒙板真值的人体图像作为训练数据
- 设计端到端的深度学习网络
- •实现从单张人体采集图像直接估计人体前景的Alpha抠图结果

相关工作

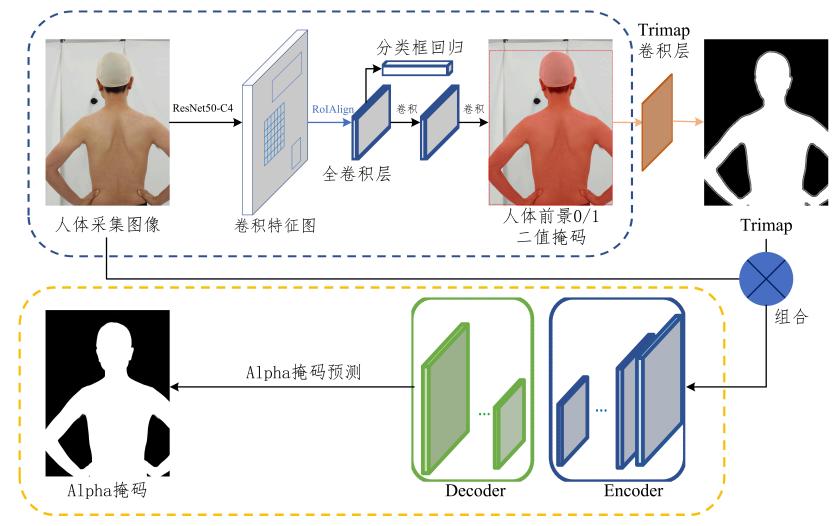
- •人体前景二值分割
 - 每个像素分配一个二值标签
 - 低视觉特征、浅层机器学习、深度学习
- · 人体前景Alpha抠图

$$C_z = \alpha_z F_z + (1 - \alpha_z) B_z$$

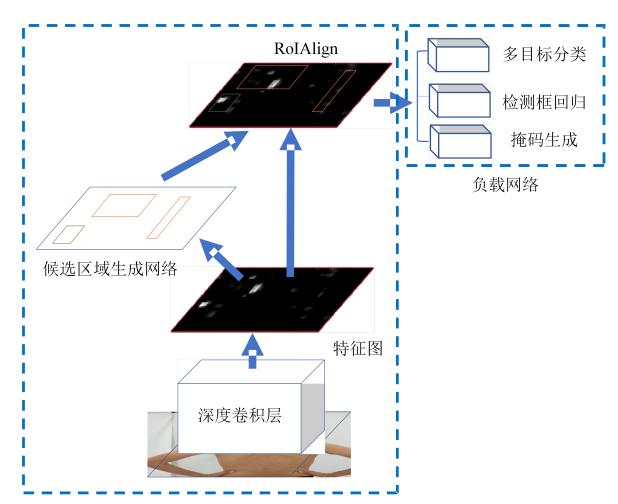
- •二值分割边界处像素分配0~1的透明度值
- 预定义或交互给定先验:三分图、人体边界

第一阶段:人体前景二值分割网络

• 算法总览

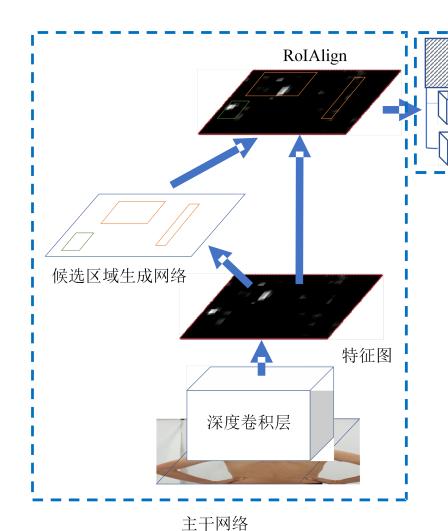


第二阶段: Alpha抠图网络



- 阶段一: 人体前景二值分割网络
- Mask R-CNN

主干网络



- 检测框回归 掩码生成
- 负载网络

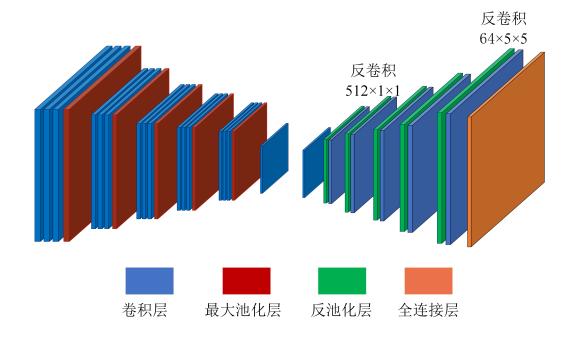
- 阶段一: 人体前景二值分割网络
- Mask R-CNN
- 损失函数
 - 二分类交叉熵
 - $L_{\text{mask}} = -\frac{1}{N} \sum_{i=1}^{N} -\log(y_i \cdot p(y_i) + (1 y_i) \cdot q(y_i))$

- Trimap自动生成
 - 后一阶段Alpha抠图算法的输入
 - 本文方法: 基于前一阶段输出的人体前景二值分割结果通过卷积获得
 - 卷积权重:

$$\omega(i,j) = \exp(\frac{-\Delta C(i,j)}{2\sigma_c^2}) \times \exp(\frac{-\Delta D(i,j)}{2\sigma_d^2})$$

- $\sigma_c = 30$, $\sigma_d = 1.5$
- 采用非学习的卷积层实现

- 阶段二: 人体前景Alpha抠图阶段
 - Encoder-Decoder架构
 - Encoder: 14个卷积层加5个最大池化层
 - Decoder: 6个卷积层加4个反池化层
- 损失函数: $L_{\text{matte}} = \lambda_{\alpha} \cdot L_{\alpha} + (1 \lambda_{\alpha}) \cdot L_{c}$
 - $L_{\alpha} = \sqrt{(\alpha_p(i) \alpha_g(i))^2 + \varepsilon^2}$
 - $L_c(i) = \sqrt{(I_c(i) I(i))^2 + \varepsilon^2}$
 - $\lambda_{\alpha} = 0.5$



实现细节

- 训练数据
 - 基于多双目视觉的人体模型获取系统的采集图像
 - 5200张训练数据, 640张测试数据, 包含不同的采集人体和不同的视角
 - 真值:
 - 人体前景Alpha抠图结果利用Photoshop手工抠图获得
 - 人体前景二值分割结果通过对Alpha抠图结果的二值化及求解二维包围盒获得

实现细节

- 训练策略
 - 数据增强: 图像线性处理、数据增广
 - 首先对第一阶段人体前景分割网络进行迭代直至收敛,固定该网络模型参数
 - •对第二阶段Alpha抠图网络进行迭代直至收敛, Trimap由预测分割结果生成
 - •对整个网络结合训练数据进行微调,Trimap由真值分割结果生成

05

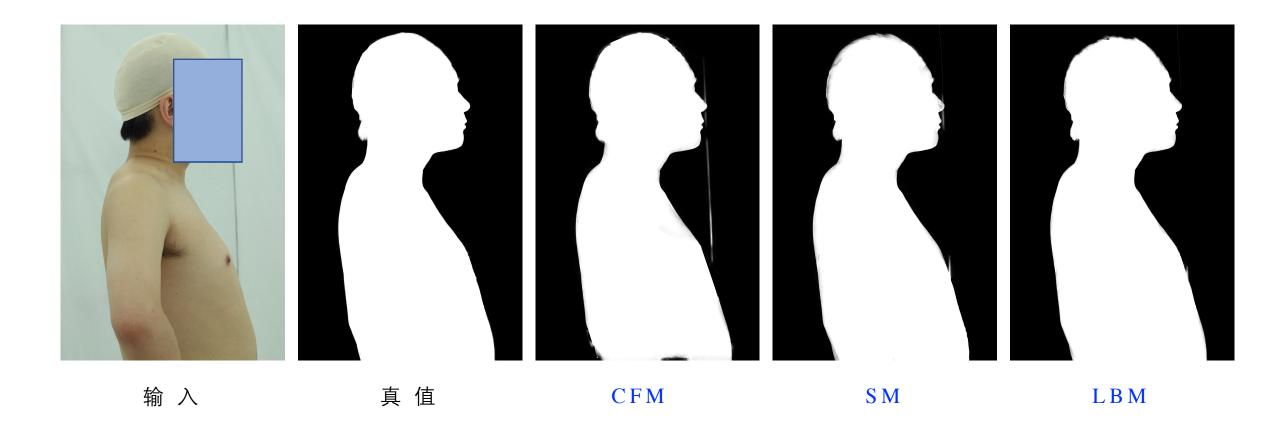
实验分析

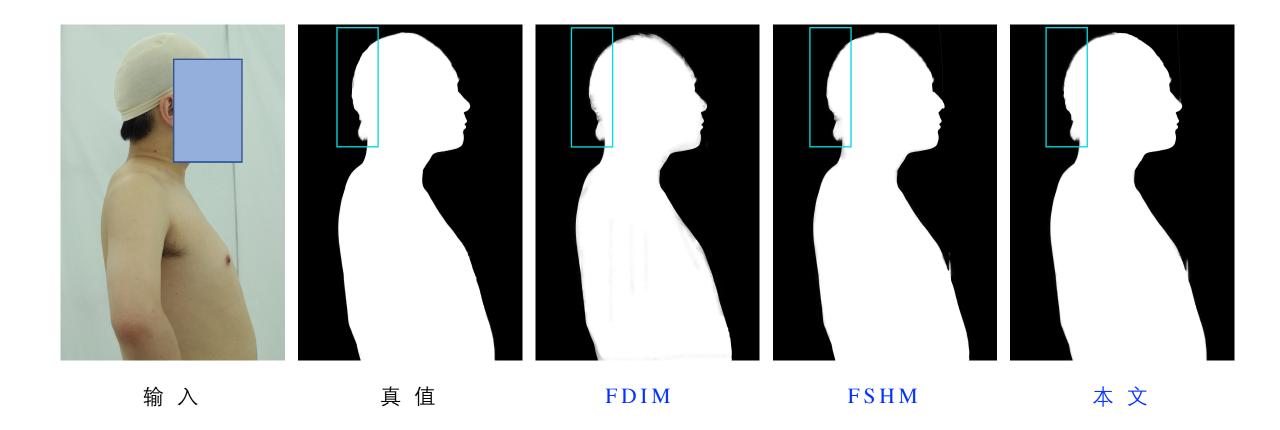
- 实验环境
 - 单机配置: 因特尔i7-7820, 3.6 GHz, 32 GB RAM, GeForce GTX1080 Ti
- 对比方法
 - 基于图像处理的方法
 - 闭合解决法(closed form matting、CFM)
 - 共享抠图法(shared matting、SM)
 - 基于机器学习的方法
 - 基于学习的抠图方法(learned-based matting, LBM)
 - 深度图像抠图方法(deep image matting, DIM), fined-tuned DIM(FDIM)
 - 语义人体抠图方法(semantic human matting, SHM), fined-tined SHM(FSHM)

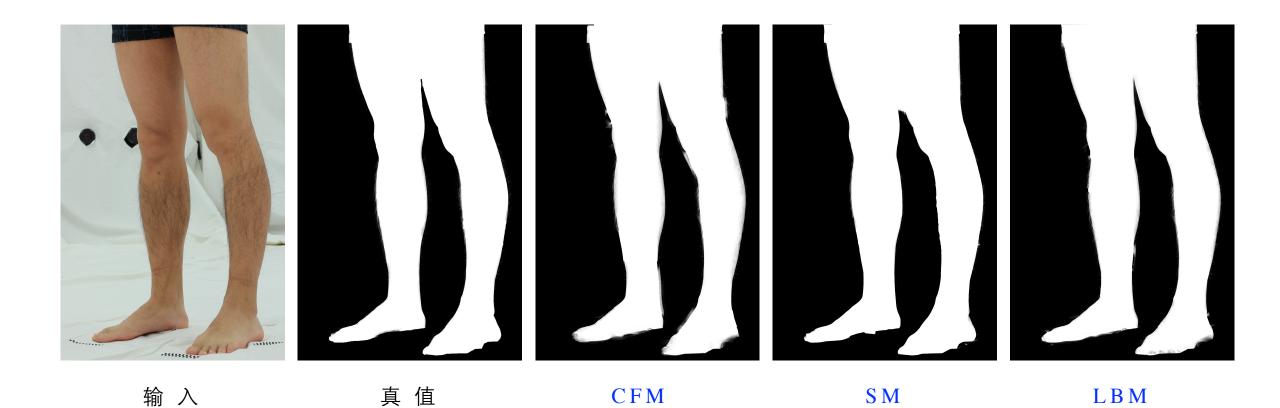
• 定性分析: 用户学习

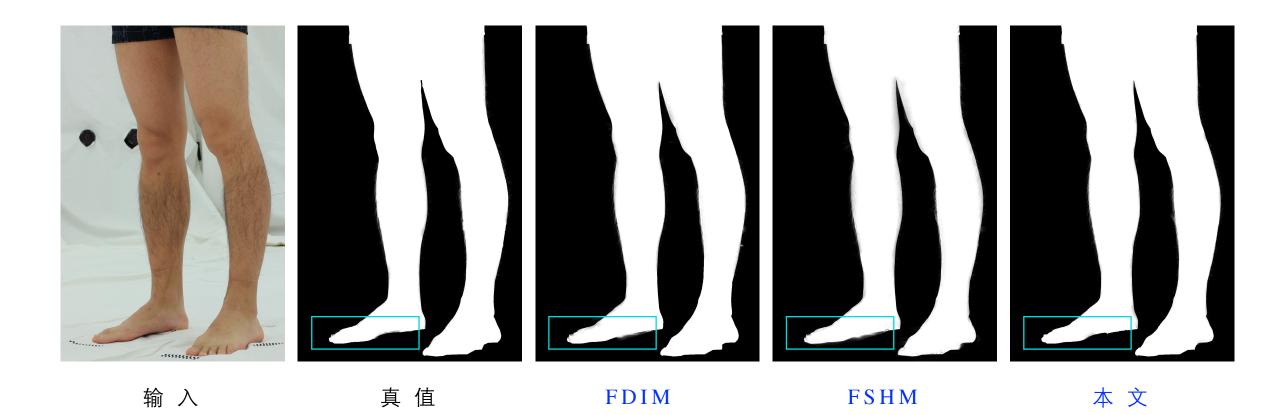
- 定量分析
 - 预测值与真值的差的绝对值之和(sum of absolute difference, SAD)
 - 预测值与真值的差的均方误差 (mean-square error, MSE)
 - 预测值与真值的误差图的梯度值之和 Gradient

$$\sum_{i} (\nabla \alpha_{i} - \nabla \alpha_{i}^{*})^{q}$$

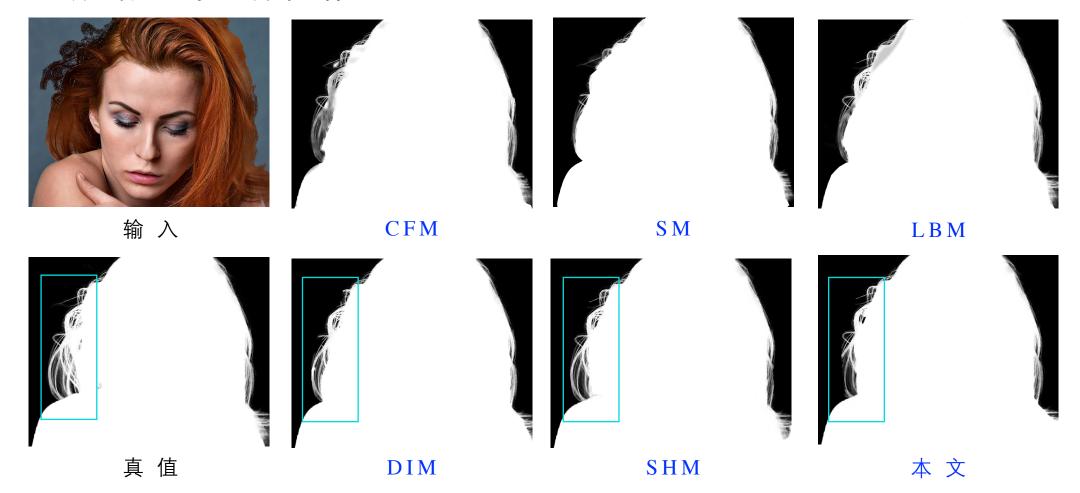




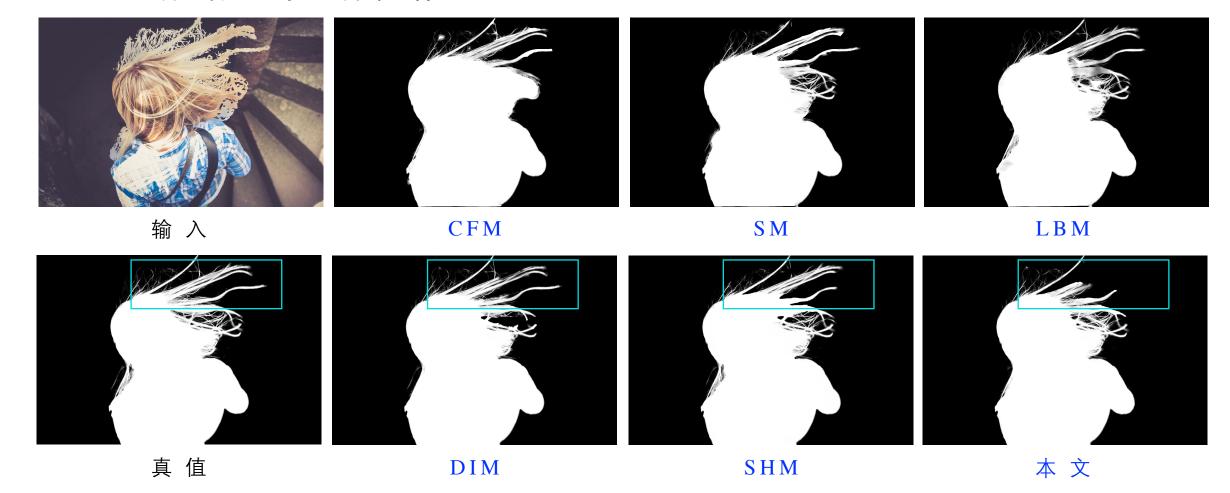




• 公开数据集的人体图像



• 公开数据集的人体图像



• 定量分析结果

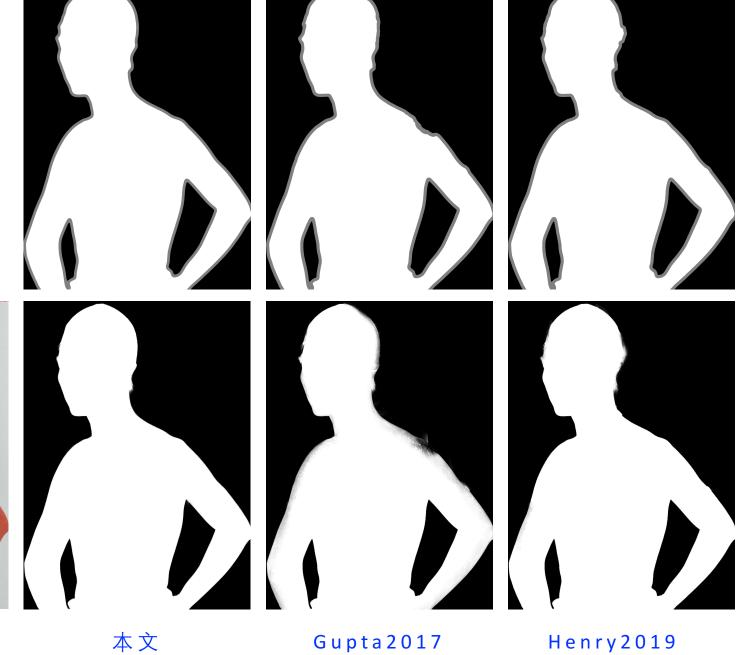
抠图方法	SAD	MSE	Gradient
S M	97.862	0.089	90.082
CFM	121.471	0.187	101.367
LBM	94.126	0.094	96.513
DIM	62.990	0.028	48.741
FDIM	60.572	0.022	42.653
FSHM	57.021	0.019	37.848
本文	56.719	0.016	36.317

抠图方法	SAD	MSE	Gradient
SM	117.914	0.095	113.782
C F M	134.274	0.138	131.703
LBM	109.527	0.102	92.039
DIM	53.242	0.024	36.199
SHM	53.026	0.021	36.143
本文	52.863	0.029	38.796

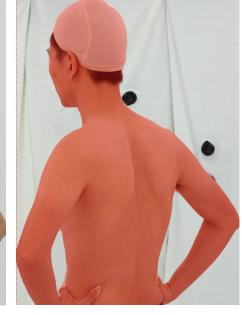
表2 通用数据集的定量分析表

表1人体数据集的定量分析表

• Trimap结果分析



输入



前景分割

Gupta2017

Henry2019

小结与展望

小结

- 全自动的人体前景抠图算法
 - 测试阶段仅输入单张人体采集图像即可
- 具有一定的泛化能力

- 依赖真值数据
- 难以处理复杂的自然背景

₩ 展望

- 非监督、对抗生成网络
- 更为合理的损失函数

感谢聆听! ranqing@zju.edu.cn

